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Abstract

The problem of the loading of a helical spring by an axial force and a torque is considered using the three-dimensional equations
of the non-linear theory of elasticity. The problem is reduced to a two-dimensional boundary-value problem for a plane region in
the form of the transverse cross section of the coil of the spring. The solution of the two-dimensional problem obtained enables
the equations of equilibrium in the volume of the body and the boundary conditions on the side surface to be satisfied exactly. The
boundary conditions at the ends of the spring are satisfied in the integral Saint-Venant sense. The problem of the equivalent prismatic
beam in the theory of springs is discussed from the position of the solution of the non-linear Saint-Venant problem obtained. The
results can be used for accurate calculations of springs in the non-linear strain region, and also when developing applied non-linear
theories of elastic rods with curvature and twisting.
© 2007 Elsevier Ltd. All rights reserved.

The solution of the Saint-Venant problem for a spring, using the linear theory of elasticity, is described in Refs 1,2.

1. Initial relations

Consider an elastic body which, in the reference configuration, has the form of a helical (spiral) spring with an
arbitrary transverse cross section. The body is formed by helical motion along the x3 axis in the plane of the figure �,
which is situated in the plane passing through the x3 axis. We will write the equation of the contour ∂�, which bounds
the region �, in parametric form: � = �(t), � = �(t), where � is the distance from the x3 axis and � is the distance measured
along the x3 axis. We will call the helical surface formed by the helical motion of the curve ∂� along the x3 axis the
side surface of the spring. When describing the strain of an elastic medium we will use as the Lagrange coordinates
non-orthogonal curvilinear coordinates �, �, �, connected with the Cartesian coordinates x1, x2, x3 of the unstrained
body by the relations

(1.1)

Here � is a real number, characterizing the angle of inclination of the coils of the spring to the x1x2 plane. When
� = 0 this system of coordinates converts into a system of circular cylindrical coordinates �, �, x3. The gradient of the
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arbitrary tensor function �(�, �, �) in coordinates (1.1) is written as follows:

(1.2)

Here i1, i2, i3 are constant unit vectors of the Cartesian coordinates. In the problem considered below, the stress-strain
state of the body is the same for all the coils of the spring, and hence we can assume that 0 ≤ � ≤ 2�.

Taking the parameters t, � as Gaussian coordinates, we can write the equation of the side surface of the spring in
the form

(1.3)

where r = xmim (m = 1, 2, 3) is the radius vector. Using Eq. (1.3) we can find the unit vector of the normal to the side
surface (g3 = i3)

(1.4)

(the prime denotes a derivative with respect to the variable t). It follows from relation (1.4) that the vector n1g1 + n3g3
lies in the plane of the figure � and is directed along the normal to its boundary ∂�. Moreover, the following relation
holds

(1.5)

The system of equations of the statics of a non-linear elastic medium when there are no mass forces has the form3

(1.6)

(1.7)

(1.8)

and consists of the equilibrium equations for stresses (1.6), constitution relations (1.7) and geometrical relations (1.8).
Here div is the divergence operator in Lagrangian coordinates, C is the strain gradient, Xk are the Cartesian coordinates
of the particles of the strained body (Euler coordinates), uk are the components of the displacement field, G is the
Cauchy measure of strain, D is the Piola asymmetrical stress tensor, P is the symmetrical Kirchhoff stress tensor and
W(G) is the specific strain potential energy.

We will henceforth assume that the specific energy of the elastic material W, considered as a function of the
components Gsk = gs · G · gk of the Cauchy strain measure in an orthonormalised basis gm, is explicitly independent of
the coordinate �, but may depend on the coordinates �, �: W = W(Gsk, �, �). Such materials will be said to be uniform
along the � coordinate. Such a class of materials includes isotropic elastic media with an arbitrary nonuniformity with
respect to the coordinates �, �, measured in the plane of the azimuthal section � (i.e. sections of the half-plane � = const)
of a coil of the spring, and also certain forms of anisotropic media.

2. Extension – compression and twisting of the spring

We will assume that the side surface of the helical spring is load-free, while a system of forces is applied to each
of its ends that is statically equivalent to a longitudinal force F3, the line of action of which coincides with the spring
axis x3, and a torque with vector M3i3. The problem of the equilibrium of an elastic body will be considered as a
Saint-Venant problem for a curvilinear rod, in which it is required to construct a solution of Eqs. (1.6)–(1.8), which
exactly satisfy the boundary conditions on the side surface of the spring, and approximately, in the Saint-Venant sense,
on the ends of the spring. Satisfaction of the boundary conditions on the ends of the spring in the Saint-Venant sense
indicates that the stress field acting in one of the outer sections, must have a principal vector equal to F3i3, and a
principal moment equal to M3i3.
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To solve this Saint-Venant problem we will consider the following two-parameter family of strains of an elastic
body having the geometrical shape described above

(2.1)

where �1, �2, �3 are functions of the variables �, �, and 	 �= 0 and 
 are real constants. From the first two relations of
(2.1) we obtain the equality

which shows that the distance of points of the strained side surface from the spring axis x3 is independent of the
� coordinate. The latter means that for a strain of the form (2.1) the side surface of the body considered remains a
helical surface, i.e. the body preserves the shape of a helical spring with the same axis x3. The diameter and the angle
of inclination of the coils change, while the azimuthal section � of the coils of the spring undergoes a deformation
described by the functions �1, �2, �3.

The case 	 < 0 corresponds to the deformation for which the spring is turned inside out, i.e. the circular ring, which
is the projection of the body of the spring onto the x1x2 plane, is turned inside out. This means that the external and
internal circumferences of the ring change roles.

In the special case � = 0, formulae (2.1) describe the deformation of a sector of a ring, i.e. a curved rod with a circular
axis. If, in addition, 
 = 0 and �2 = 0, we have pure bending of a curved beam in the x1x2 plane. In this case each arc of
the circle � = const, � = const converts into an arc of a circle of different radius, which also lies in the horizontal plane,
so that the elastic body after deformation keeps the shape of a sector of a solid of revolution.

When 
 = 0 relations (2.1) correspond to strains for which the curved rod with axis in the form of a section of a
helical line is converted into a circular bar.

By virtue of relations (1.2) and (1.8) the tensor fields of the strain gradient and the Cauchy strain measures,
corresponding to the displacement field (2.1), have the form (k, s = 1, 2, 3)

(2.2)

(2.3)

Since, according to Eqs. (2.2) and (2.3), the quantities Gsk are independent of the � coordinate, it follows from Eq.
(1.7) that, for a material that is uniform along the � coordinate, the components of the Kirchhoff stress tensor will be
functions solely of the two coordinates � and �, and hence the Piola stress tensor for a strain of the form (2.1) will have
the representation

(2.4)

Substituting expressions (2.4) into Eq. (1.6), we obtain the scalar form of the equilibrium equations for the Piola
stresses

(2.5)

Taking into account constitutive relations (1.7) and relations (2.2) and (2.3), we see that Eq. (2.5) represent a system
of three scalar equations in three functions of two variables �k(�, �) (k = 1, 2, 3). The boundary conditions on the side
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surface n · D = 0, in accordance with relations (1.4), (1.5) and (2.4), are written in the form

(2.6)

Since, according to equality (1.4), the components of the vector of the normal n1 and n3 are independent of the �
coordinate, boundary conditions (2.6) do not contain the variable � and, together with equilibrium Eq. (2.5), form a
two-dimensional boundary-value problem for the plane region �. Hence, assumptions (2.1) regarding the nature of the
strain of the elastic medium reduce the initial three-dimensional non-linear problem for a spring to a two-dimensional
boundary-value problem for a plane region � in the form of an azimuthal cross section of a coil of the spring.

Suppose �1(�, �), �2(�, �), �3(�, �) is the solution of boundary-value problem (2.5), (2.6). We will prove that the
functions

(2.7)

also satisfy Eq. (2.5) and boundary conditions (2.6). According to equalities (2.7), replacement (2.7) implies the
following replacement of the strain gradient and the Cauchy strain measure (E is the unit tensor)

(2.8)

From Eqs. (1.7), (2.4) and (2.8) we obtain the relation

(2.9)

It is easily verified that equilibrium Eq. (2.5) and boundary conditions (2.6) are insensitive to the change (2.9). So
the functions �∗

h (k = 1, 2, 3) are solutions of the two-dimensional boundary-value problem.
The insensitivity of the boundary-value problem for the region � to the replacement (2.7) implies that the position

of the spring after deformation is defined by this boundary-value problem, apart from rotation around the x3 axis and a
translational displacement along the same axis. One of the methods of eliminating this non-uniqueness of the solution is
to make the unknown functions conform to the following additional conditions (everywhere henceforth the integration
is carried out over the region �)

(2.10)

(2.11)

The geometrical meaning of limitation (2.10) is that the axial displacement of points of the section of a spring coil
when � = 0 is equal to zero on average over the cross section, while limitation (2.11) denotes that, on average over the
cross section � = 0, there is no rotation of the material fibres around the x3 axis.

The solution of the two-dimensional boundary-value problem (2.5), (2.6), (2.10), (2.11) for the plane region �
enables us to satisfy the equilibrium equations in the volume of the body and the boundary conditions on its side
surface exactly. To satisfy the boundary conditions on the ends of the spring in the integral Saint-Venant sense we will
determine the principal vector F and the principal moment M of the forces acting in an arbitrary azimuthal section
� = const of a coil of the spring, undergoing deformation of the form (2.1). Using representation (2.4) we have

(2.12)

Taking into account the fact that there is no load on the side surface of the body, from the condition for all the
forces applied to the part of the coil of the spring between the half-planes � = �1 and � = �2 to balance, we obtain that
F(�1) = F(�2). By virtue of relations (2.2) and (2.12) this leads to the equations

(2.13)
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In view of the fact that the numbers �1 and �2 are arbitrary, the determinant of the system of Eq. (2.13) for F1 and
F2 is non-zero. Consequently,

Since the principal vector F is parallel to the X3 axis, the principal moment M is independent of the choice of the
point of application on this axis, which enables us to calculate the moment about the point X1 = X2 = X3 = 0. As a result,
we obtain

(2.14)

Here we have used the representation of the radius vector of a point of the deformed body, which follows from relations
(2.1)

According to Eqs. (2.4) and (2.14), the quantities Mk are constant. It follows from the condition for the moments of
all the forces applied to the part of the coil of the spring between sections � = �1 and � = �2, to balance, that

Hence, the realization of deformation (2.1) requires the application to each end of the spring of a system of forces,
statically equivalent to a force and a moment acting at a point on the spring axis and directed along this axis. After
solving the two-dimensional boundary-value problem (2.5), (2.6), (2.10), (2.11) the value of the force F3 and the value
of the moment M3 become known functions of the parameters 
 and 	.

When � = 
 = �2 = 0, i.e. for pure bending of a circular beam, it follows from equalities (2.3) that

It can then be shown that, for an isotropic material, the following equalities are satisfied

Hence, the second of the equilibrium Eq. (2.5) and one of the boundary conditions (2.6) are satisfied identically. By
virtue of relation (2.12) the resultant F of the forces acting in any section � = const, is equal to zero. This means that,
to maintain a deformation of pure bending of a circular beam, one need only apply bending moments M3 to its ends.

The potential energy of the deformation of the part of the coil of the spring between the sections � = �1 and � = �2
is given by the formula

(2.15)

Having in mind formulae (2.2) and (2.3), we will consider the functional calculated from the solution of the
two-dimensional boundary-value problem (2.5), (2.6), (2.10), (2.11)

Here we have taken into account the fact that the solution of the problem on the cross section depends on the parameters

 and 	, while the specific energy W, according to relations (2.2) and (2.3), depends on the parameters 
 and 	 both
explicitly and via the functions �1, �2 and �3.

Theorem. For an axial force and a torque, acting at the ends of spring, the following energy relations hold

(2.16)
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Proof. From equalities (1.7), (2.2) and (2.4) we have

(2.17)

Here we have used the following formulae, which follow from relations (2.2),

In view of the symmetry of the Kirchhoff stress tensor P in Eq. (1.7), the following equality holds

which makes the second term on the right-hand side of equality (2.17) vanish. From relations (2.3), (2.15) and (2.17)
we now obtain (�k, 	 = ∂�k/∂	)

(2.18)

The second integral on the right-hand side of the second equality of (2.18) vanishes by virtue of equilibrium Eq.
(2.5) and boundary conditions (2.6). Referring to formulae (2.14), from (2.18) we obtain the second equality of (2.16).
The first equality in the theorem is proved similarly. �

Energy relations, similar to (2.16), arise when there is twisting and tension-compression of a non-linear elastic
prismatic rod4

(2.19)

Here � is the relative longitudinal extension, � is the angle of twist, F is the longitudinal force, M is the torque,
and � is the energy per unit length of the rod. Relations (2.19), like formulae (2.16), are exact consequences of the
three-dimensional equations of the non-linear theory of elasticity for a prismatic body.

A comparison of relations (2.16) and (2.19) enables us to establish an analogy between a helical spring and a
prismatic rod for twisting and tension-compression and to introduce the idea of a rod equivalent to a spring. Suppose l
is a certain characteristic dimension of the spring, for example, the length of the middle circle of the ring, which is the
projection of a coil of the spring onto the x1x2 plane. Then, the potential energy of strain per unit length of the prismatic
rod, equivalent to a helical spring in the problem of twisting and tension-compression, is given by the formula

(2.20)

from which we obtain the equalities

The problem of the equivalent rod was discussed previously in Ref. 5 within the framework of the applied non-linear
theory of springs. In the present paper we have established an analogy between a straight rod and a helical spring on
the basis of an exact solution of the non-linear Saint-Venant problem of the twisting and tension-compression of a
cylindrical body and a spring.



L.M. Zubov / Journal of Applied Mathematics and Mechanics 71 (2007) 519–526 525

3. Conversion of the boundary-value problem on a section of a coil of the spring

Since the components of the Piola stress tensor Dsk (s, k = 1, 2, 3) are expressed non-linearly in terms of the functions
�1, �2 and �3 and their derivatives, the two-dimensional boundary-value problem (2.5), (2.6) for the region � in terms
of these functions is a Neumann-type problem with non-linear boundary conditions, which can be converted into a
Dirichlet-type problem with linear boundary conditions. To do this we first eliminate the functions �1, �2, �3 from
relations (2.3). As a result we obtain the following system of equations

(3.1)

Eq. (3.1) will be called the equations of compatibility, since they are the necessary and sufficient conditions for the
problem of determining the kinematic variables �1, �2 and �3 to be solvable for unique and differentiable components
of the strain gradient Cks (�, �) (k, s = 1, 2, 3) specified in the region �. It can be shown that, when conditions (3.1)
are satisfied, the functions �1 and �2 in a simply connected region � can be found uniquely, while the function �3 can
be found apart from an arbitrary additive constant. If the region � is multiply connected, the functions �1 and �2 are
unique, while the function �3 may be multivalued.

It can be verified by a direct check that the equilibrium equations in Piola stresses (2.5) are satisfied identically by
making the substitutions

(3.2)

The six functions �, �11, �12, �23, �31, �32, in terms of which the general solution of the equilibrium equations is
expressed, will be called stress functions. The boundary conditions (2.6) on the boundary ∂� of the azimuthal section
of a coil of the spring, can be converted, using (3.2), to the following simple form (s is the length of an arc on the curve
∂�)

(3.3)

In the case of a simply connected region � the boundary condition in (3.3) for the function � can be replaced, without
loss of generality, by the condition � = 0 on ∂�. If the plane region is multiply connected, i.e. contains openings, the
function � takes constant values on the contours of the openings. These constants differ for different openings and
are unknown in advance. Integral relations, similar to relations (2.14) of Ref. 6, serve as additional equations for
determining them and express the requirement that the function �3(�, �) should be unique in the multiply connected
region.

Using the method described previously,6,7 we invert the relation D(C) for the given material, i.e. we express the
components of the strain gradient Csk in terms of the components of the Piola stress tensor Dmn, and, using relations
(3.2), we represent the latter in terms of the stress functions. Then, the six compatibility Eq. (3.1) will be equations
in the six stress functions and, together with the linear boundary conditions (3.3), will comprise a Dirichlet-type
boundary-value problem.

When formulating the boundary-value problem on a section of a coil of the spring in terms of the stress functions,
the integral condition (2.10), which eliminates the possibility of an arbitrary translational displacement of the spring
along its axis, obviously becomes unnecessary. In integral condition (2.11) cos� must be expressed in terms of stress
functions. To do this it is sufficient, when taking Eq. (2.3) into account, to replace the derivatives �p,� and �p,� (p = 1,
2) by the components of the tensor C and to represent the latter in terms of stress functions using the relation C = C(D).

The stress functions enable us to give a variational formulation of the two-dimensional boundary-value problem on
the section � in the form of Castigliano- and Tonti-type variational principles. Using the kinematic variables �k(�, �)
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(k = 1, 2, 3) we can formulate Lagrange, Reissner and Hu-Washizu-type variational principles. The formulations and
proofs of these variational theorems are similar to those obtained previously6 in the problem of the equilibrium of a
prismatic rod and are not given here.
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